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INTRODUCTION

When a plene shock wave moving through one material meets an interface
with a new material, the shock is transmitted atl a different strength invo
the "target" material and & new wave is reflected back into the "parent"
material. The strength of the transmitted wave is determined in this report
for the case when both materials are solid and can be described by a Mie-

Gruneisen equation of scate,

The reflected wave may be either a shock or a rarefaction, In the
first case, the transmitted shock pressure exceeds that in the incident
shock, This occurs generally, but not necessarily, when the target material
is denser than the parent material., In the second case, the reflected
rarefaction, there is & reduction in shock pressure, This situation arises
typically, but not necessarily, when the target material is of lower density
than the parent material, One result of this report is to exhibit the
boundsry between these two cases. This boundary can also be interpreted
as the relation between bulk modulus and density in the target material
such that there is no refiected wave and consequently sll of the energy in
the incident wave is transmitted.

This anaelysis waes mede to facilitate estimates of the damage incurred
in structures which are strongly sbocked, as from hypervelocity projectile
impact, intensive X-ray exposure, or underground nuclear explesions, Actual
failure of structural materials is incurred as a result of shock-wave
reflection at either a free surface or at a contact surface, The resulting
negative pressure could lead to tensile fracture and possibly spallation
fragments., However, failure criteria will not be considered in this report.
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REFLECTION OF ACOUSTIC WAVES

When a wave is sufficiently weak, whether tensile or compressive,
it is referred to as an acoustic wave and its analysis can be carried out

in considerable detail since the governing equations are linear, The

general solution to the ascoustic reflection problem is discussed separately

in this section since an elementary analytical solution is available,

The solution to the nonlinear shock reflection problem discussed in the
body of this report has the acoustic solution of Eq.1l)ac a limit when
the shock pressures are well below the bulk modulus of the material. For

the geometry outlined in Fig, 1, the ratio of the pressure after reflection,

p3, to the pressure before reflection, Pys is

3. = 2 (1)

Py Lty ce/opcy gy (Ky Po/Ky pe)“% ’

where p is the density, ¢ is the sound speed based on the bulk modulus,
c = +K/p , K is the bulk modulus, and pc = JKp is the acoustic impedance.
The result given in Eq. (1) shows that the pressure ratic never exceeds

2 in the acoustic case,

The above result can be used to determine the pressure ratio for a
wave transmitted through a slab of material embedded in a different
material, If the subscripts 1 and 2 are used to denote the outside and
inside materials, respectively, then the ratio of transmitted pressure,

PT’ to incident pressure, PI’ is

Pp  hppo Py
= =

5. (2)
I (pl cl + pa (22)
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Region 1 Region 3 Region 4 Region 2
Once-shocked Twice-shocked Once-shocked Unshocked

Parent Material Parent Material

Target Meterial Target Material

pl, ul p3 = pll.’ u3 - uh PL]-, uh’ p2 = u2 = O
- = / = l
Ky, py = /Y, Ko P53 = /¥y Kys 0y, = 1/, Kps 0o = 1/V,
Reflected Contact Transmitted
shock surface shock
- T S Ve 4

Parent Material

Tarzet Material

NOTE: A zerc subscript, ( )., denotes the state of unshocked parent
material ; although no such material appears in the figure, it

will have bulk modulus KO and density

po'

Fig. l--Geometry for the shock reflection problem.

If the acoustic impedance ratio is as large as 10, or as small as 1/10, the
pressure transmitted through the sandwich is 6% of the original, This is
about the greatest reduction ihat migh® be expected with common materials.
The effect of subsequent reflections within the sandwich may complicate the

result for some applications.




REFLECTION OF SHOCKS IN IDEAL GASES

For ideal gases, the pressure ratio behind the reflected shock for
the geometry of Fig. L is given by Courant and Friedrichs(l) where the
target material is treated as a rigid wall:

P3 = Py ue +1

2 b (3)
B+ py/py

Pl-PO
where p is the initial static pressure and u2 = (y - 1)/{y + 1) depends on
Y, the ratio of specific heats, For strong shocks, this simplifies to

Py~ P 1
0. A-g, ()
pl"'Po Y-l

which is 8 for y = 7/5 and 6 for y = 5/3. For weak shocks, po/pl is near
unity and the pressure ratio is near 2, as in the acnustic case when the
target materiel has infinite acoustic impedance, Thus, the shock-reflec.’on
pressure ratios are larger in the ideal gas~~strong shock case than in the
acoustic case, It is this fact that motivated the work described here,

since for strong chocks in solids it was not clear whether the large pressure

ratios found in the perfect gas case or the small pressure ratios found in
the acoustic approximation would be more nesrly correct.




EQUATIONS FOR THE REFLECTED SHOCK CASE

The geometry for the general shock reflection problem is outlined in
Fig. 1, which defines the four regions that appear in the shock-reflection
prob.em, (Material in the initial stete, denoted by & zero subscript, is
not shwn in Fig. 1.) The usual shock relations as given in Ref. 1, page 129,

are:
pl vl = p2 V2 F (5)
2 2
pl + Pl Vl = P2 + p2 V2 ] (6)
3 v 2= -
Pl/pl+El+%vl p2/92+F2+% Vo (7)

where vy denotes the relative velocity of the material and the shock. 1In
addition tc these conservation equations, an equation of state of the Mie-

Gruneisen form,
p = G(V) B/V + P(V) , (8)

is assumed in order to complete the physical description of the problem,
A review of the experimental data in Ref, 2 suggests that if the Gruneisen
ratio G(V) has the form

G(V) = G, V/V, , (9)

then the data are in many instances fitted better than if C(V) is teken to
be a constant. This essumption also leads to convenient analytical ex-
pressions in the calculation of isentropes. In the present analysis, Gb
is taken to be 2, which is typical, but not necessarily accurate, for most
materiels, The best choice of Go for various materiels generally lies in
the range from 1.5 to 3.0, but the final results appear insensitive %o the

value of Go. as indicated in Fig. 2.

The determination of F(V) follows from the empirical observation(e)
that the shock velociiy, Ugs and the material velocity, u?, behind a shock
into a material at rest are related through the equation

u =c+ L . (10)




AR P A ey sma, w3 oa o

*07aBI £2TSUSP JO SINTBA oom.na.p pus ¢ oM = %y ‘gnnpom YTaq THUHS I0F )
samssoad UOT305TISI HOOYS WO ~H QUBLSUOD dYG UT UOTIBLIBA JO 309330 SUL™-3 214

Sty suemaMis n00HS
ot 6 8 L 3 s ¥ £ 2 0 o

1'0

L) k| i i 1 T 1 § L i

oizi= Yy ——

wri= 0%

2= O&\N& —_

— -1 80

Y4/ % *3avm 0310371434 ©'EOHOV OLLVYH 3..3834d

619 ———- - 60
o2¥%

o e vmha e e - N - T Mt N e, A e s e ki b V8 A

A

L.

P

e P s e




*2 Jo¥ JO uoT3wTaa L3TO0TSA STOTIaed=£3TO0TSA HOOUS JIBIUTT 33
¢« Ong + oo = mb ut Sutawadde ‘g ‘aeojameasd SUY3 UT UOTIBTIBA JO 3993FF8 syui~~f °31d
as

On/4
00! 3 o8 oL 09 oS o (01 o2 o1l 0
T ] 1 T ! T ] T T T Y
—20
2
10 G|
€l
b4/%
$2'0 Sl
— —49°0
|‘¢'l"l
S0 ¢l
7 2y S —80

ot




P

The empirical parameter, S, usually has values in the range from 1.2 to 2.0
and was taken to be 1.5 in the calculations, As with GO, subsequent results
appear insensitive to the value of S, as illustrated in Fig. 3. Combining
this equation with the shock relations of Egs. (5), (6), and (7) leads to

F(V) = Ko(1 - Gy 8/2)/(x - se)2 =K¥£(®), 06=21-V7 (11)

where K is the bulk modulus of the material and V is the initial specific
volume, Equations for the pressure and velocity in Region U4 behind the
transmitted shock can be obtained from the first two shock equations, (5)

and (6), in terms of the compression 0),, where

0, =1-V/V,. (12)
(The initial specific volume, V, is V, in this instance.) These relations
are:
f(eu)
p), = K, t—m (33)
and
u, = /&, By V, - (1)

(It will be assumed that the Gruneisen ratio is the same in both materials.)
A comparison of the shock pressure from Eq. (13) with the more detailed
treatment by Tillotson in Ref. 3 is given in Fig. 4, which shows the
Eugoniot for pressures up to 100 Mbar ir copper. (Copper is a convenient
example, since it has the selected values of Gy = 2 and S = 1. 5.)

Equations for the compression 93 and the pressure p3 in Region 3 are

obtained by considering the conservation equations across the reflected shock.

The appropriate equations relating these conditions in Regions 3 and 1 are,
after appropriate manipulations of Egs. (5) through (9),

2
6. =8, + (a5 - ) 15)
R N i
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b, [1 + Gy (05 - el)/e] + x%)[f%e3) - f(el)]

1- Go(e3 - 9;)/2

P3 = ) (16)

where

05 =1 - v3/vO s 6, =1 - Vi/vb (a7)

The additional requirement that the pressure and velocity be

continuous between Regions 3 and 4 completes the formulation of the
problen.,

B o g < e e —— -

e an o ————— e o T
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EQUATIONS FOR THE REFLECTED RAREFACTION CASE

Region 3 of Fig. 1 may contain a rarefaction wave under some
conditions, If this is the case, the pressure will vary isentropically

ir that region, and it is necessary to have an equation r-lating pressure
and specific volume oun the isentrope. This is obtained by considering
the equation of stcte

p = Gy B/Vy + F(V) . (38)

In order that dS = (dE + pdV)/T be & perfect diffevential, 1t is necessary
that

3 .1 3B g {1 oE
5 G o = 5T {"Iv‘ (p + av)]
or, substituting from the equation of state,

- B, + T Gy VO=GE/V0+F(V),

vwhere the subscripts denote differentiation with respect to that variable.
The cheracteristic equations(h) are

L4V _ oy 4T aE
a7 OTGO‘F(V)+GOE‘7VO'

Two independent soluticns containing arbitrary constants c, and c, are

obtained by combining the first equation with the second and then that
equation with the third:

NN [,v 3V,
e = E(V) +Ee R where H(V) =] e F{V) av ,
Yo
c2=GoV/VO+lnT,

leading to. the general solution

- eV,
E-e %"V [. E(V) + J (T ecov/vo)] (19)

o —————— . ot e A=

i
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vhere J denotes an arbitrary function, H(V) is plotted in nondimensional
form in Wig, 5 for the function given by Eq. (11). If the specific heat

is assumed constant and equal to Cv, then

9 o .
ST T v

and therefore the function J must be linear in its argument. It follows
that the equation of state is

- GOV/VO j’ e(;ov/vo

E=C,T-e F(V) av (20)
and the entropy is given by
G.V/V
e’
S-8 =C Indi® + BV) ( (21)
0 v CV TO

where SO is en arbitrary constant. Combining this expression with the
equation of state, the isentrope connecting the pressures in Regions 1 and UL
is given by

G.V./V Go"3/vo

/
(o, - R(¥)3e © % O ay B (V)/V) = oy - F(V,)]e

+ Gy H(v3)/v0 . (22)
\
The Riemann integral(l’ is used to find the relation between u and V

along the particle paths., The appropriate solution for the current problem
is

u - ug =f ¢ %V = W(V,) - W(Vs) (23)
v
3

The sound speed, c, appearing in the above integrand can be obtained from
the equation

et = et Syt e e e,
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7=V- (%)s = =T, + G, /Y, (2h)

and the expression below for the pressure on an isentrope from the point

(v

30 p3) in the p-V plane:

-G V/V. ., GV, /V
b= F(v) +e 070 {Go [H(V) - B(V3)1/%, + Loy - P(v)] e O3 O} . (25)
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CALCULATICNS

The equations for shock transmission were solved by an iteration
technique using the IBM-TOLO. A general outline of the solution procedure
is given in the flow diagrams on the two following pages. The calculations
wers done using nondimensionsl. pressures and velocities, which are dencted by
bars. The following list relates the quantities in the flow diagram to those

used in the theoretical discussions above.

W = u, /ey U, = uy/e, G% = u3/c0 , u, = w/e,

2 2
% =K/0q ¢ = Ky/0p
f(e) = H(V)/K0 s 0=1 - v/v0 .

S

ﬁ(e) = %

w(v)




RO U

84704 +€ € <<

COMPUTE
NEXT
€ TO USE

#0

v (U‘%z;_')

| (!+9|)(54 ’:':'f" ﬁ')

5 .5 It T 0-8) 0= + e, 1ig)
> =% (1-8,) (1- ¥)

SOLUTION

Chart 1, Soiution procedure for the reflected shock,
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CALCULATE TABLE FOR

_ 6

fgre [exp (6o 1-0)) 19148
o]

FOR 0¢ 8 < 0.85

. .
[_94 =Q
0y O4+€ € << |
i
5, 184
|-§ 84
G o
TO USE Us = /3, P,

1

FIND 93 SUCH THAT

8y :
U,—ﬁ'..%{-- f [-v.f'(ew G.F(G)]J‘ d8
8
= W(8;)-w(8,)
WHERE
Ce(8-8,) Ge(8—-6,)
F(0) = Be & +1(0) - £(8)e 88

+eee ¥ Big)-Ha ]

5% 5

=0

1
SOLUTION

Chart 2. Solution procedure for the reflected rarefaction.
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SUMMARY AND CONCLUSIONS

The purpose of this report is to provide a survey of the pressure ratios,
p3/pl’ encountered in the shock reflection process. In Figs. 6-12 the results
of the calculations are given for initial shock pressures in the range from
zero to ten times the bulk modulus, with both the density and bulk modulus
ratios being varied in the two materials, When the transmitted pressure is
less than that in the incident wave, the reflected wave is a rarefaction, and
when it exceeds that in the incident wave, the reflected wave is a shock. The
curves for the two cases fit smoothly together, as might be expected on
theoretical grounds, by noting that when the pressure ratio is near unity the
reflected wave is weak, and thus the Hugoniot and isentropes for the reflected
wave have & third-order contact.(l) The pressure ratios lie between 1/3 and
3 in the region of the parameters investigated, which includes bulk modulus and
density ratios from 1/10 to 10. The velocity ratios, u3/u1, are plotted in
Figs. 13 through 19.

The "complete transmission" curves separating the reflected shock case
from the reflected rarefaction case are shown in Fig. 20 as a relation between
bulk modulus ratio, Ké/Kb, and density ratio, pe/po. This relation depends
on shock strength, When the shock is weak, the complete transmission curve
is given by acoustic theory and is K’E,p2 = K90- As the incident shock strength
is increased, the curve separating the two cases approsch the line p2/po = 1,
Thus for strong shocks complete transmission reguires only that the density
ratio be near unity. The density ratic is therefore more important than the
bulk modulus in determining the transmitted shock pressures for strong shocks.
This is to be expected on physical grounds, since at higher pressures materials
begin to behave as a gas and the bulk-modulus terms in the Mie-Gruneisen
equation become relatively small.,

I VD R e~
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4} REFLECTED SHOCK

P /%, 0 /
2} 0.3

3
i g 1.0 p
: W )
; o8} 10
‘ oS
. .
! REFLECTED RAREFACTION
4 ’ 04
Lo
0.2
ot 1 A 1 1 J 1 i 1 4
0. c.2 0.4 08 0& 10 2 4 & 8 0

Po/Po

Fig. 20--The boundery between the reflected shock case and the reflected
rarefaction case as & function of bulk modulus ratio, K,/K., and density
ratio, p,/p,. The boundary depends on shock strengtk, B,, which is ex-
pressed %1 Bnits of the bulk medulus, K., in the diagram. If the para-

. meters are such that & point lies on theé boundary there is no reflected
wave,
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